
SIMULATING
NETWORK DEVICES

WITH PYTHON

Matias Torchinsky (matt)
matts@gmx.co.uk

• Introduction
• Motivations and goals
• Coding and Live samples
• Conclusions

WHAT WE WILL SEE

“IN THE BEGINNING …”

Why ?

What is this ?

What will we see ?

DOCSI
S

(

ET
H

UT

CM
TS

D
HCP

TFTP

Route
rs

CM

P

WELCOME TO
THE ISP WORLD

SITUATION
(“PROBLEM TO SOLVE”)

No lab!

Python or C++ ?

No open source simulator

Need critical mass!

HANDS ON....
LET´S DEVELOP

•Real network traffic

•Run on a notebook

•Client / Server and modular
architecture

•Scalabilty

SIMULATOR REQUIREMENTS

SIMULATOR ARCHITECTURE

C
Dispatcher

VD1

Simula
tor

N

Virtual
Network

Ethernet

VD2

VD n Stats

Config

Engine

Cmds Disp.

Ethernet

IP

Protocol 1

Protocol 2

Protocol n

Virtual
Device

Ethernet

IP

ARP

ICMP

DHCP

sudo apt-get install xinetd tftpd tftp 

H
ost

CURRENT FEATURES -
WHAT I HAVE DONE.
• Protocols supported:

• Link Layers :
• Spoofing (Mac / IP)
• Event driven (threads scalability problem)
• Adding new protocols is quite easy ! (modular)
• API

DHCP NTPICMPARPTFTP

Ethernet

WHAT'S SO COOL ABOUT
THIS PROJECT ?

• Lets see a live sample !
• Coding a client “on the fly”

– Creating a CMTS
– Creating a CableModem
– Running the CableModem.

• Simulating hundreds of thousands of devices in 2'
– Creating 1 CMTS
– Creating “n” CableModems (different vendors !)
– Powering on everything and analizing results.

• ICMP : It’s already implemented...so... Can we ping it ?
YEAH !

• Creating other network devices

TOOLS

Protocol Buffers

DHCP Server TFTP Server

CONCLUSIONS

Simulate network traffic (real/custom)

Crafting/implementing custom devices
/ protocols is easy

Recreate expensive scenarios.

Stress testing

Bug hunting, crafting your own packets
and flows

THANK YOU !

